CMA Global Reanalysis (CRA-40): Status and Plan

Zhiquan Liu

and many scientists from NMIC, CAMS, NMC, NCC, NSMC, NUIST, IAP, BNU

Outline

> Background

- > Progress in the past two more years
 - > T639/GSI based reanalysis experiments (2015)
 - GFS/GSI based reanalysis experiments (2016)
 - Implementation of the NRT system (2016)
- Future Plan

Outline

> Background

> **Progress in the past two more years**

> T639/GSI based reanalysis experiments

> GFS/GSI based reanalysis experiments

Implementation of the NRT system

> Future Plan

Existing Global Reanalyses

US, ECMWF, JMA already produced several rounds of global reanalyses

	Reanalysis	Producer	Period	Resolution	Assimilation
1^{st}	NASA/DAO	NASA/DAO	1980-1995	2×2.5L20	3S-OI+IAU
	NCEP/NCAR	NCEP+NCAR	1948-	T62L28	3DVAR SSI
Generation	ERA-15	ECMWF	1979-1993	T106L31	3D-OI
2^{nd}	NCEP/DOE	NCEP+DOE	1979-	T62L28	3DVAR SSI
	ERA-40	ECMWF	1957.9-2002.8	T _L 159L60	3DVAR
Generation	JRA-25	JMA-CRIEPI	1979-	T106L40	3DVAR
$3^{\rm rd}$	ERA-Interim	ECMWF	1979-	T _L 255L60	4DVAR
0	CFSR	NCEP	1979-	T382L64	3DVAR GSI
Generation	MERRA	NASA	1979-2010	1/2×2/3L72	3DVAR GSI
	JRA-55	JMA	1957.12-2012	T _L 319L60	4DVAR
Other	20CR	NOAA-CIRES	1871-2008	T62L28	EnKF w/ P _{sfc}
	MERRA-AERO	NASA	2000-	50kmL72	Aerosol DA
	MACC	ECMWF	2003-	T _L 255L60	4DVAR w/
					Chemistry
4 th	ERA5	ECMWF	1979-	T _L 639L137	Ensemble of
C					4DVAR
Generation					n

Reanalysis papers are highly cited \rightarrow broad applications

Year Published 1996, US NCEP/NCAR	The NCEP/NCAR 40-year reanalysis project <u>E Kalnay</u> , M Kanamitsu, R Kistler Bulletin of the, 1996 - journals.ametsoc.org Abstract The NCEP and NCAR are cooperating in a project (denoted "reanalysis") to produce a 40-year record of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities. This effort involves the recovery of land Cited by 21765 Related articles All 25 versions Web of Science: 13838 Cite Save
2010, NOAA CFSR	The NCEP climate forecast system reanalysis S Saha, S Moorthi, HL Pan, X Wu Bulletin of the, 2010 - search.proquest.com Abstract To use the same model and data assimilation over a very long period was the great advance during the 1990s, because gridded datasets available before 1995 had been created in real time by ever-changing models and analysis methods, even by hand Cited by 1710 Related articles All 21 versions Web of Science: 1117 Cite Save
2011, NASA MERRA	MERRA: NASA's modern-era retrospective analysis for research and applications MM Rienecker, MJ Suarez, R Gelaro Journal of, 2011 - journals.ametsoc.org Abstract The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA's Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA's Earth Observing System satellites into a Cited by 1735 Related articles All 6 versions Web of Science: 1238 Cite Save
2011, ECMWF ERA-Interim	assimilation system <u>DP Dee</u> , SM Uppala, AJ Simmons Quarterly Journal of, 2011 - Wiley Online Library The organisation of this paper reflects these three categories, with a section devoted to the description of each. In section 5 we summarise our evaluation of the performance of ERA-Interim , with a particular focus on progress made since ERA-40 Cited by 5960 Related articles All 14 versions Web of Science: 4065 Cite Save More

CMA global & regional reanalysis

- Late 2013, CMA decided to start global and regional reanalysis efforts
 - NMIC leads global reanalysis
 - Obtained funds for a 4-year (2015-2018) project (行业 专项重大项目)
 - 7 institutes involved in the project
 - CAMS leads East Asia regional reanalysis

Late 2014, CMA determined

3 Core Projects for Innovation (2014-2020)

NMIC, CAMS

ational Meteorological Information Cer

Why another reanalysis?

- Prompt service capability of NMIC (part of its function like NOAA/NCDC) by collecting more historical observations via reanalysis project and producing gridded reanalysis product
- Improve NCC's capability for climate monitoring/prediction with more timely reanalysis product
 - NCC current climate monitoring relies on the 1st generation NCEP/NCAR reanalysis
- Foster the optimal assimilation of observations at NMC, especially from Chinese observing networks
- Many other scientific/societal benefits ...

Goal of CMA 40-year Global Reanalysis (CRA-40)

Produce 40-year datasets (1979-2018) :

- Ingested observations
- Reanalysis datasets: CMA Reanalysis (~30km, 6 hourly)
- **Obs. feedback datasets** : departure from analysis & 6h forecast
- Reanalysis uncertainty : from EnKF ensembles

Will become an operational system : CMA Re-Analysis System - CRAS

Continuously running in near real time for climate monitoring

Outline

Background

> Progress in the past two more years

> T639/GSI based reanalysis experiments (2015)

GFS/GSI based reanalysis experiments (2016)

Implementation of the NRT system (2016)

Future Plan

T639/GSI-based reanalysis experiment

- CMA operational NWP (when proposed reanalysis in 2014)
 - CMA's global NWP operation is T639 (based on an old version of ECMWF model, ~1996 version) plus an old GSI-3DVAR (2006 version)
 - Ingest limited observations (Conv., ATOVS, AMV)
- 2014 proposed strategy for CMA reanalysis
 - Not touch T639 model, but update GSI to the latest version
 - Binary format observation to PrepBUFR/BUFR
- NMIC was able to produce a 2.5-year experimental reanalysis in 2015
 - Using T639+GSI-V3.3 and NCEP GDAS BUFR observations
 - Compared to re-run operational T639+GSI

Configuration difference: OP vs. Exp (T639/GSI-V3.3)

	Operation	Exp (T639/GSI-V3.3)
GSI	GSI2006 version	GSI-V3.3
Observation	Conv. OBS (CMA binary format): Radiosonde, SHIP/BUOY(Ps,T,Q,W), SYNOP(Ps), AirCFT AMUA: NOAA15, 18 AMUB/MHS: NOAA15, 16, 18 NO GPSRO SatWind VIS/IR: JMA, EUMET WV : MODIS Other: NO	Conv. OBS (GDAS PrepBUFR): Radiosonde, SHIP/BUOY(Ps,T,Q,W), SYNOP(Ps), little AirCFT, METAR(ps) AMUA: NOAA15, 16, 18, 19 METOP-A, METOP-B AMUB/MHS: NO USE GPSRO SatWind VIS/IR: JMA, EUMET, GOES, MODIS WV: JMA, EUMET, GOES, MODIS Other: ASCAT wind, VADWND
Background & obs. error	Obs. error: from binary obs. input Bk. error: from operational file	Obs. error: from prepBufr Bk. error: converted from OP
Other	/	Strong dynamic constraint (TLNMC)

Evaluation against radiosonde observation (temperature)

Evaluation against radiosonde observation (wind-u)

10d forecast evaluation against NCEP FNL

Red: Exp (T639/GSI-V3.3) better than OP Green: Exp (T639/GSI-V3.3) worse than OP

Improved except tropical zone

Score card for T639/GSI-V3.3 compared with T639-OP

Domain	Parameter	Level	Anomaly Correlation RMS Error																			
		250	-	-									•	-							٠	
	UWND	600		٠	٠	٠			٠	٠	٠			٠	٠		٠			٠	٠	
		850		▲	٠	٠							۸				٠	٠				4
		260	-										•	-								
	VWND	500			۸	۸					٠	٠		٠			٠			٠	٠	4
EASI		650		۸	۸	۸								۸	٠		٠	٠		٠	٠	
		250		۸	۸	▲			٠	٠	٠			▲	▲		▲			٠	▲	4
	TEMP	500					٠		٠	٠	٠									٠	٠	
		860		۸	۸				٠	۸	٠		•									
		250	-	•					٠		٠		•	-								Г
	HGT	600	-						٠		۸		•	٠							٠	Γ
		700																				
		260				۸																Г
	UWND	500										•										
		860	Ā	Ā	Ā	Ā						-	Ā	Ā	Ā	Ā						•
		250	Ā	Ā									Ā									H
	VWND	500	1ī	T	Ā	Ā	1						17	Ā	Ā	Ā	-					
NH		850	1	Ā	Ā	ī	-	1	-				1	1	Ā	Ā	-	-	-			F
		250	17	-	-	-		17	-			÷	7	7	-	-	1	1	-			۲
	TEMP	800	17	7	7	7	-	-	-				7	7	7	7	7	-	-	-		
		000		-	-	-		17					7	7	-	-	-	17	-	-	-	
		020		7	7	-	-	-	-	-			÷	-	-	-	-	-	-	-		
	HGT	200		-	-							_	L.				-	-				
	1161	500	—	-	-	•						-	Ľ	-	•	-	-		-			H
		700	-	÷	÷	-		-				-	-		-	-						-
	TIMNED	250											17	A								
	OWIND	600	-					.					•					.				
		850	-																		-	4
	37003175	250		A.		A				-			•	A.	A							
	VWND	500		▲	▲	▲			▲	۸	٠			▲	▲		▲			٠		
SH		850	•		▲	▲											▲			▲		
		260			▲	▲			▲	٠					▲		٠		•	•	▼	
	TEMP	500		▲	▲	▲			▲	▲					▲		▲			▲	▲	4
		860		▲	▲				▲						▲	▲	▲			▲	▲	4
		250		▲	▲	▲			▲						▲	▲	▲					
	HGT	600																				
		700															▲					
		260		•	▼	▼	▼	-	•	•			٠		•	•	•	-	-	-		
	UWND	500			•	•	•	•	•	▼	•	•										
		850																				4
		250	-	▼	-	-	-	-	•	•	•	•		•	-	-	•	•	-			
	VWND	500			À				÷							À						1
TRO		860	Ā	Ā							•	•	Ā	Ā	Ā	Ā	Ā	Ā				
		250	1	1	Ā								Ā	1	Ā	1		1	Ā	1		F
	TEMP	600			-	F	F	Ē	-	-	-	-		F	F	F	Ŧ	F	Ţ	-	Ţ	
	111111	850	1		1	1	1	1	Ť	1	Ť.	Ť		÷	-	Ť	1	1 T	Ť.	Ť	1	۲
		260	÷		÷	F	÷	F	-		-		F	÷	-	-	÷	-	÷	÷	÷	t
	HGT	600	÷	I-	÷	÷	÷	÷	÷	-	-		Ľ	L.	÷	÷	÷	1-	1.		-	F
		200	Ľ	L.	-	Ľ	÷	1.	÷	Ľ	Ľ,	Ľ	Ě	1.		I.	Ľ	÷	÷	_	_	
		700		•		•	•	•	•				•	•			•	•	•	•		
'ar bette Far wors	ert⊟ ⊛tW	etter Vorse			: 8 : W	ett/ /ors	er b ≋ø b	out out	no not	t si t al	igni gni	fica floa	int Int				: E	que	alîty			

10d forecast evaluation against NCEP FNL

500hPa anomaly correlation of geopotential height Improved except tropical zone

NCC climatic evaluation: Tyler-diagram, use ERA-I as reference field

Evaluation by National Climate Center

Climate Indices

Global Mean Quantities

ERA-Interim as reference : compare CRA with NCEP1, which is currently used in NCC climate monitoring

Red: CRA better than NCEP1 Blue: NCEP1 better than CRA (only for SOI)

National Meteorological Information Center

Distance to ERA-I derived from Tyler-diagram Comparison among JRA55, NCEP1, NCEP2, CRA

Summed distance for different variables

		JRA55	NCEP2	NCEP1	CRA2
Year	年	1.28	2.06	2.30	1.24
Spring	春	1.34	2.14	2.58	1.31
Summer	夏	1.49	2.52	2.94	1.60
Fall	秋	1.32	2.08	2.28	1.28
Winter	冬	1.04	1.50	1.58	1.02
Average	平均	1.29	2.06	2.33	1.29

CRA closer to ERA than JRA55/NCEP1-2 for year/spring/fall/winter, JRA55 closer to ERA than CRA in Summer time

Overall: CRA better than NCEP1&2, Similar to JRA55

Encouraging results but issues remain

• Large T bias in higher levels

• Worse scores over tropical region.

• Assimilated NCEP GDAS observations, not NMIC-processed observations.

Outline

Background

> Progress in the past two more years

> T639/GSI based reanalysis experiments (2015)

GFS/GSI based reanalysis experiments (2016)

Implementation of the NRT system (2016)

> Future Plan

GFS vs. T639 (with same GSI-V3.3 and GDAS obs):

score for 6-month run

	GFS	T639
Observation	GDAS	GDAS
System	GFS/GSI 3DVar	T639/GSI-V3.3 3DVar
Resolution	T _L 574	T _L 639

Red: GFS/GSI better than T639/GSI Green: GFS/GSI worse than T639/GSI

GFS is significantly better than T639.

Not surprised, because T639 is based on a 20-years old version of ECMWF model!

Score card for GFS/GSI compared with T639/GSI

D	Demand at a st	T	thereally Convolation BVC France																	
Domain	Farameter	Level		non	naiy		orr	eia	(10)	n —				м м	3 H	srr.	ər			
		200			.	.	.						+	÷	•	•				
	RH	600												+						
		700				•								+						
		860					-							-	-		-			
TRADI	UWND	200				-								4		-				
168.01		700	A 4											-	•					
	VWND	200																		
		700	A 4		4									•						
	TEMP	200													•	•	•			
		700													▲	•				
	HGT	200		•											•					
		850				A														
		200												▲	▲	▲				
	RH	500													▲	▲				
		700												▲	▲	▲				
		850																		
	UWND	200											▲	▲	▲	▲				
NH		700												▲	▲	▲				
	VWND	200												▲	▲	▲	٠			
		700												▲	▲	▲				
	TEMP	200												▲	▲	٠				
-		700											▲	▲	▲	▲				
	HGT	200					٠							▲	▲	▲				
		860															۸			
		200												▲	▲	▲				
	RH	600												▲	▲	▲				
		700												▲						
		850												▲	▲	▲				
	UWND	200												▲						
SH	0.1112	700				۸							۸	▲		۸	۸			
	VWND	200											▲	▲	▲	▲	۸			
		700												▲	۸	۸	۸			
	TEMP	200											▲	▲	▲	▲				
	1 Million	700											۸	▲			۸			
	нст	200												▲			۸			
	1101	850				4								▲			۸			
		200												▲						
	ਸ਼ਾਸ	500				4								▲			۸			
	1.11	700																		
		850				4								▲			۸			
	TIWNIN	200											۸				۸			
TRO	ONIND	700															۸			
	VWND	200																		
	1111	700																		
	TEND	200																		
	TEMP	700																		
	TOT	200					Ā					À				-	-			
	nor	850										Ā		٠						
ar bette	er _≜:⊟	etter		: 6	lett	er I	out	no	t si	ignī	fica	nt				: E	que	alīty		-

Evaluation against radiosonde observation (temperature)

• High-level T bias disappeared

• Analysis of GFS: Smaller RMSE than T639 (even ERAI)

• 6h forecast of GFS:

Much smaller RMSE than T639.

What about GSI-Hybrid? (2 month experiment)

Red: GSI-Hybrid better than GSI-3DVar Green: GSI-Hybrid worse than GSI-3DVar

Score Card for GFS6 against GFS4 (NH & SH)

Significant Improved.

n	D	· · ·		Ал	on	al	7 C	orr	ela	tio	n				RМ	SE	Irre	7			-
Domain	Parameter	Level	0	1	2	3	4	б	6	7	8	9	0	1	2	з	4	6	6	7	8
		200																			
		250																۸			
	UWND	500																			
		700	Ā	Ā	Ā	Ā	Ā						Ā	Ā	Ā	Ā			\vdash	\vdash	
		850	Ā	Ā	Ā	Ā							Ā	Ā	Ā	Ā			\vdash	\vdash	
		200	T	ī	ī	ī	-	-					Ā	ī	ī	ī	7	-	-	-	
		250	Ī	Ā	Ā	Ā	-	Ā					Ā	Ā	Ā	Ā	-	Ā	-	-	-
	VWND	500	17	ī	ī	ī	Ā	1			_		Ā	ī	T	ī	Ā	7	-	-	
		700	17	ī	ī	ī	1	1			_		Ā	T	ī	ī	ī	Ā	-	-	
		950	17	-	-	7	-	1					7	7	-	7	-	7	-	-	
		000	17	7	7	7	-	-					7	7	-	-	-	-	-	-	
TRO		250	17	7	7	7							7	7	-			÷			
	TEMP	200	17	7	7	7	1						7	7	-						
		800	17	-	-	-	-						-	-							
		700		-	-	-	1	-					•	-	-	1	-	-	<u> </u>	<u> </u>	
		860		-	-	-	-	1					-	-	-		-	-	<u> </u>	<u> </u>	
		200		.	•	•	•	4						<u> </u>							
	TOT	250												Y	•	•	•	•			
	HGI	500																			
		700			•																
		860			4		۸.											۸			
		250																۸			
		600		▲	▲	▲								▲	▲	▲	▲	۸			
	вн	700				▲										▲					
		860												▲	▲		▲	٠			
		200		▲										▲							
		260		▲																	
	UWIND	500		▲		٠	٠	٠							٠	٠	٠	٠			
		700		▲		٠	۸							▲	▲	٠	٠				
		850		▲		٠	۸							۸	٠	٠	٠				
		200				٠									۸		٠	٠			
		260			۸	٠									٠	٠					
	VWND	500												۸			٠				
		700																			
		850												4							
		200																			
EASI		250												Ā			-				
	TEMP	500	Ā	Ā	Ā								Ā	Ā							
		700	E	Ā	Ā			-					-	Ā							
		850		Ā	ī	-		-						Ā	Ā	-	-	-		-	
		200	Ī	1	-	-		-							1	-	-		-	-	
		260	17	Ā	-	-	-				_		Ā		-	-	-		-	-	-
	HGT	500		1	1								1	-	1				-	-	
		800	17			1							-	-			-		-	-	-
		950																	-	-	-
		050																	-	-	-
		200											-	-					-		
	P H	600	17	-	-								-	-	-				<u> </u>	-	
		700	1			1	1	1						+	•	1		-			
		. 950		i 🛋 1	i 🐥 .	i 🛋 .	i 🌲 .	1 🐥 -								i 🐥 -	i 🔺 🛛	•			1

500 hPa geopotential height analysis RMSE w.r.t. ERA-Interim

Now more challenging part: Assimilate NMIC-processed obs with GFS/GSI

- Since 2014, NMIC has collected >100TB raw observations
 - Conventional and satellite data
 - Intended to convert them to NCEP BUFR format for GSI assimilation
- In late 2015, we found NOAA released CFSR assimilated BUFR observations (1979-2014)
- New strategy: based on CFSR dataset,
 - Replace CFSR's upper air and surface data by NMIC data over China
 - Replace some satellite data with newly reprocessed version

GFS/GSI-3DVAR experiments running (from 2013.5)

	Conventional	Satellite data
CFSR	CFSR PREPBUFR	amsua + gpsro + satwnd
СМА	CFSR PREPBUFR+China Conventional obs	amsua + gpsro + satwnd
ACMA	CFSR PREPBUFR+China Conventional obs	More radiance+gpsro satwnd

Challenges still remain in historical data processing/QC/bias correction

Outline

Background

> Progress in the past two more years

> T639/GSI based reanalysis experiments (2015)

GFS/GSI based reanalysis experiments (2016)

➤ Implementation of the NRT system (2016)

Future Plan

Implementation of NRT running system

- To solve RT observation issues in NMIC
- Two sub-systems running in parallel: T639+GDAS OBS; T639+NMIC OBS

NMIC OBS

Monitoring of the NRT running system

中国气象局 国家气象信息中心 Copyright © 2015 NMIC All Rights Reserved.

Issues in NRT running system

NMIC-processed real-time obs feed has larger

bias and RMSE than GDAS based obs.

2017 Plan

- Fully move to GFS/GSI system for at least historical experiments
- Then can focus more on observation aspects
- Plan to produce CRA-Interim product with 3DVAR for longer period (depending computing resource and progress on observation side)

Project Timeline

